A Modified Mountain Clustering Algorithm based on Hill Valley Function

نویسندگان

  • Junnian Wang
  • Deshun Liu
  • Chao Liu
چکیده

A modified mountain clustering algorithm based on the hill valley function is proposed. Firstly, the mountain function is constructed on the data space, with estimating the parameter by a correlation self-comparison method, and database’s mountain function values are computed. Secondly, the hill valley function is introduced to partition the data distributed on each peak. If the hill valley function’ value of two datum equal to 0, it means these two datum are on the same mountain and belong to the same cluster, otherwise they are not. Finally, the data in a cluster with maximum mountain function value is selected as the cluster centre of this cluster. The testing of four databases indicate that the proposed clustering algorithm can categorise the data numbers in each cluster and find all the cluster centres exactly, and no need priori parameters and stopping criterion correlating to the database.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extracting Prior Knowledge from Data Distribution to Migrate from Blind to Semi-Supervised Clustering

Although many studies have been conducted to improve the clustering efficiency, most of the state-of-art schemes suffer from the lack of robustness and stability. This paper is aimed at proposing an efficient approach to elicit prior knowledge in terms of must-link and cannot-link from the estimated distribution of raw data in order to convert a blind clustering problem into a semi-supervised o...

متن کامل

Kuo - Lung Wu A modified mountain clustering algorithm

In this paper, we modify the mountain method and then create a modified mountain clustering algorithm. The proposed algorithm can automatically estimate the parameters in the modified mountain function in accordance with the structure of the data set based on the correlation self-comparison method. This algorithm can also estimate the number of clusters based on the proposed validity index. As ...

متن کامل

Modified Convex Data Clustering Algorithm Based on Alternating Direction Method of Multipliers

Knowing the fact that the main weakness of the most standard methods including k-means and hierarchical data clustering is their sensitivity to initialization and trapping to local minima, this paper proposes a modification of convex data clustering  in which there is no need to  be peculiar about how to select initial values. Due to properly converting the task of optimization to an equivalent...

متن کامل

A Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach

In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...

متن کامل

A Hybrid Data Clustering Algorithm Using Modified Krill Herd Algorithm and K-MEANS

Data clustering is the process of partitioning a set of data objects into meaning clusters or groups. Due to the vast usage of clustering algorithms in many fields, a lot of research is still going on to find the best and efficient clustering algorithm. K-means is simple and easy to implement, but it suffers from initialization of cluster center and hence trapped in local optimum. In this paper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JNW

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011